
Audit Report for Dfyn - January 26, 2023

Summary
Audit Report prepared by Solidified covering the Dfyn smart contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on January 26, 2023, and the results are presented here.

Audited Files

The source code has been supplied in a private source code repository:

https://github.com/dfyn/V2-Contracts

Commit number: c22ca5c998b5bf4098f8d8c05ceaf909dadeba99

Update: Fixes were received on Sunday February 19, 2023.
Latest commit number: 17a6628227ac951d5fa974b0718e6da7c6247bbd

Intended Behavior

Dfyn is a concentrated liquidity pool automated market maker (AMM) that implements fully
on-chain limit orders.



Audit Report for Dfyn - January 26, 2023

Findings
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does not necessarily equate to a
higher risk, although certain bugs are more easily detected in unit testing than a security
audit and vice versa.

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Medium -

Level of Documentation Medium -

Test Coverage High -



Audit Report for Dfyn - January 26, 2023

Issues Found

Solidified found that the Dfyn contracts contain no critical issues, 3 major issues, 14
minor issues, and 10 informational notes.

We recommend issues are amended, while informational notes are up to the team’s
discretion, as they refer to best practices.

Issue # Description Severity Status

1 ConcentratedLiquidityPool.sol: Function
initialize() can be called multiple times

Major Resolved

2 Vault.sol: An incorrect data.balance is being
maintained for vault strategy

Major Resolved

3 ConcentratedLiquidityPool.sol: Function
collectLimitOrderFee() breaks reserves invariant
leading to reverts in mint() and
createLimitOrder()

Major Resolved

4 MasterDeployer.sol/ConcentratedLiquidityPool.s
ol: The protocol risks permanently losing access
to its collected fees

Minor Resolved

5 MasterDeployer.sol: Function setDfynFee()
emits the incorrect event when limitOrderFee is
set

Minor Resolved

6 Farm.sol: Function subscribe() does not validate
the given array lengths

Minor Resolved

7 LimitOrderManager.sol: Function
createLimitOrder() does not refund any extra
ETH sent

Minor Resolved

8 DfynLPToken.sol: Unsafe minting in mint()
function

Minor Resolved

9 MixedRouteQuoterV1.sol: Possible underflow in
casting from int256 to uint256

Minor Resolved

10 ConcentratedLiquidityPoolFactory.sol: Possible Minor Resolved



Audit Report for Dfyn - January 26, 2023

zero address for liquidity pool tokens

11 ConcentratedLiquidityPoolHelper.sol: Possible
invalid limitTick value

Minor Resolved

12 DfynRouterV2.sol: Unused amountOut
parameter in function swapCallBack()

Minor Resolved

13 TickCounter.sol: Incorrect while statement in
function countTicks()

Minor Resolved

14 MasterDeployer.sol: limitOrderFee is not
validated in constructor

Minor Resolved

15 LimitOrderManager.sol: Admin can set
limitOrderCharge to arbitrarily large numbers

Minor Resolved

16 SwapExcecuter.sol: Fees are not added for most
common case of zero-for-one exact output
swaps

Minor Resolved

17 MasterDeployer.sol: Function setDfynFee() can
lower limitOrderFee so it is lower than
LimitOrderManager.rebateRate for pool

Minor Resolved

18 Farm.sol: Constructor does not validate _vault /
_limitOrderManager

Note Resolved

19 ConcentratedLiquidityPool.sol: Incorrect
documentation comment for MIN_FEE

Note Resolved

20 DfynRouter.sol: Function sweep() is
unnecessarily declared as payable

Note Resolved

21 LimitOrderManager.sol: Function
setLimitOrderCharge() does not emit an event

Note Resolved

22 Farm.sol: Function subscribe() can potentially
save on gas by declaring positionIds as calldata

Note Resolved

23 MixedRoutedQuoterV1.sol: Unnecessary use of
require statement

Note Resolved

24 LimitOrderManager.sol: Unnecessary use of
return statement

Note Resolved



Audit Report for Dfyn - January 26, 2023

25 LimitOrderManager.sol: Use of confusing
function name

Note Resolved

26 The deadline field of various swap structs is
unused

Note -

27 ConcentratedLiquidityPool.sol: Unused storage
variables

Note Resolved



Audit Report for Dfyn - January 26, 2023

Critical Issues

No critical issues have been found.

Major Issues

1. ConcentratedLiquidityPool.sol: Function initialize() can be

called multiple times

The function initialize() can be called an unlimited number of times by the owner, thus
potentially compromising several of the contract’s immutables such as masterDeployer and
vault.

Recommendation
Only allow initialize() to be called once in the lifetime of the contract.

Status
Resolved

2. Vault.sol: An incorrect data.balance is being maintained for

vault strategy

In the harvest() function, when a strategy makes a profit, the data.balance variable is never
updated to reflect this. The data.balance variable is then used later in the function to determine
whether to further invest if (data.balance < targetBalance) or divest else if (data.balance >
targetBalance) in the strategy. If data.balance is not updated after a profit, users will be misled
into further investing into a strategy when they could have divested their profit earnings instead.



Audit Report for Dfyn - January 26, 2023

Recommendation
Add a statement to update data.balance when a strategy has turned a profit.

Status
Resolved

3. ConcentratedLiquidityPool.sol: Function

collectLimitOrderFee() breaks reserves invariant leading to

reverts in mint() and createLimitOrder()

The invariant reserve0 + limitOrderReserve0 == _balanceOf(token0) (similarly for
token1) must hold before and after the call to collectLimitOrderFees().

However, at the end of the function call, the right hand side of the invariant is now
_balance(token1) - (token1LimitOrderFee - token1Rebate).

The left hand side of the invariant is too large, by an amount equal to token1LimitOrderFee -

token1Rebate.

The impact of the invariant being broken is that further calls to mint() and
createLimitOrder() will fail because they both check the invariant and revert otherwise. The
only way to fix this problem is to transfer additional tokens manually to the pool which results in
a loss of funds.

Recommendation

The left hand side of the invariant must be decreased by the same amount. The function should
be updated as follows:

function collectLimitOrderFee() public lock returns (uint256 amount0, uint256

amount1) {

if (token0LimitOrderFee > token0Rebate) {

amount0 = token0LimitOrderFee - token0Rebate;



Audit Report for Dfyn - January 26, 2023

token0LimitOrderFee = token0Rebate;

reserve0 -= uint128(amount0);

_transfer(token0, amount0, dfynFeeTo, false);

}

if (token1LimitOrderFee > token1Rebate) {

amount1 = token1LimitOrderFee - token1Rebate;

token1LimitOrderFee = token1Rebate;

reserve1 -= uint128(amount1);

_transfer(token1, amount1, dfynFeeTo, false);

}

}

Intuitively, it makes sense that the reserves must go down since the limit order fees come from
swappers who fulfill the limit orders. The fees must be paid from the regular reserves and not
the limit order reserves since the limit order reserves can be emptied on a claim.

Also, note that the condition is now if (token0LimitOrderFee > token0Rebate). This is
because rebates need to be paid to those who claim the limit orders. These rebates must stay in
the pool.

Note

The same issue also exists in ConcentratedLiquidityPool.claimLimitOrder().

Status
Resolved



Audit Report for Dfyn - January 26, 2023

Minor Issues

4. MasterDeployer.sol/ConcentratedLiquidityPool.sol: The

protocol risks permanently losing access to its collected fees

In case the keys for dfynFeeTo are ever lost, there is no way to update its value in the contract,
thus rendering the protocol fees permanently inaccessible.

Recommendation
Implement a setter function for dfynFeeTo.

Status
Resolved

5. MasterDeployer.sol: Function setDfynFee() emits the incorrect

event when limitOrderFee is set

The function setDfynFee() incorrectly emits the DfynFeeUpdated event when limitOrderFee

is set.

Recommendation
Emit the LimitOrderFeeUpdated event instead.

Status
Resolved



Audit Report for Dfyn - January 26, 2023

6. Farm.sol: Function subscribe() does not validate the given

array lengths

The function subscribe() does not validate that positionIds and incentiveIds are of the
same length.

Recommendation
Validate the given array lengths in order to avoid unintended input mistakes.

Note
The same issue exists in functions Farm.claimRewards() and Vault.batchFlashLoan().

Status
Resolved

7. LimitOrderManager.sol: Function createLimitOrder() does not

refund any extra ETH sent

The function createLimitOrder() does not refund any extra ETH sent by mistake, resulting in
the funds being stuck in the contract.

Recommendation
Refund any ETH sent that exceeds the value of amountIn.

Note
The same issue exists in: DfynRouter.exactInput(),
DfynRouter.exactInputSingleWithNativeToken(),
DfynRouter.exactInputWithNativeToken(), DfynRouter.complexPath(),
DfynRouterV2.exactInputSingle(), DfynRouterV2.exactInput(),
DfynRouterV2.exactOutputSingle(), DfynRouterV2.exactOutput(), and
ConcentratedLiquidityPoolManager.mint().



Audit Report for Dfyn - January 26, 2023

Status
Resolved

8. DfynLPToken.sol: Unsafe minting in mint() function

OpenZeppelin discourages the use of _mint() , as it does not check to ensure that the

recipient is a smart contract that implements the ERC721Receiver interface. This could result in

an NFT being lost in a contract.

Recommendation

Use the _safeMint() function instead of _mint().

Status
Resolved

9. MixedRouteQuoterV1.sol: Possible underflow in casting from

int256 to uint256

The uniswapV3SwapCallback() function expects that if amount0Delta is negative when

amount1Delta is positive and vice versa. However, a user can enter a positive number for both

parameters which will result in an underflow of the uint256 cast on line 127 returning an

extremely large value for amountReceived.

Recommendation

Add a check to ensure that if amount0Delta > 0 then amount1Delta < 0.

Status
Resolved



Audit Report for Dfyn - January 26, 2023

10. ConcentratedLiquidityPoolFactory.sol: Possible zero address

for liquidity pool tokens

In the deployPool() function there is no check to ensure that tokenA and tokenB are valid

addresses. For e.g., if tokenA is address(0) and tokenB is a valid address the check on line 24

will pass. The call to _registerPool() on line 44 will not catch this case also.

Recommendation

Add a check to ensure that both tokenA and tokenB are not the zero address.

Status
Resolved

11. ConcentratedLiquidityPoolHelper.sol: Possible invalid

limitTick value

In the getLowerOldAndUpperOldLimit() function, the check on line 63 does not ensure that the

limitTick value is within the range TickMath.MIN_TICK to TickMath. MAX_TICK. This allows a

user to enter a value for limitTick that can be smaller than TickMath.MIN_TICK or larger than

TickMath. MAX_TICK.

Recommendation

Change the check to require(limitTick > TickMath.MIN_TICK && limitTick <
TickMath.MAX_TICK, "Invalid limit tick").

Status
Resolved



Audit Report for Dfyn - January 26, 2023

12. DfynRouterV2.sol: Unused amountOut parameter in function

swapCallBack()

The swapCallBack() function passes in an amountOut parameter, but the parameter is never

used within the function.

Recommendation

Validate the call to exactOutputInternal() against amountOut.

Status
Resolved

13. TickCounter.sol: Incorrect while statement in function

countTicks()

In the countTicks() function, if tickBefore is greater than tickAfter, then count will always return

zero. This is because the while statement in the else block checks for ticksCrossed <= tickAfter

where ticksCrossed is initialized to tickBefore. Hence, the loop will never start.

Recommendation

Change the while statement to read ticksCrossed >= tickAfter.

Status
Resolved



Audit Report for Dfyn - January 26, 2023

14. MasterDeployer.sol: limitOrderFee is not validated in

constructor

There is no check to ensure that limitOrderFee <= MAX_FEE. There is also an

invalidLimitOrderFee() error on line 11 that is not being used.

Recommendation

Add a check to ensure limitOrderFee <= MAX_FEE and use the associated error message.

Status
Resolved

15. LimitOrderManager.sol: Admin can set limitOrderCharge to

arbitrarily large numbers

There is no maximum value that parameter _fee can be when parameter _isRebate == false

for function LimitOrderManager.setLimitOrderCharge(). This can lead to arbitrarily high
charges being forced upon creators of limit orders.

Recommendation

Add a maximum charge constant and check that _fee is below it similar to the checks in
function ConcentratedLiquidityPool.updateSwapFee().

Status
Resolved



Audit Report for Dfyn - January 26, 2023

16. SwapExcecuter.sol: Fees are not added for most common

case of zero-for-one exact output swaps

The function _swapExactOut() is missing the addition of fees for the case of zero-for-one exact
output swaps that don’t cross ticks. The impact is that fees are not collected. As this is a
common case this could mean substantial loss of income for the Dfyn protocol. Also, fee-less
swapping makes profiting from arbitrage possible for even smaller price differences than is
normally possible.

Recommendation

Add the following line between lines SwapExecuter.sol:66 and 67

cache.amountIn = cache.amountIn + swapExecute.fee;

Status
Resolved

17. MasterDeployer.sol: Function setDfynFee() can lower

limitOrderFee so it is lower than LimitOrderManager.rebateRate

for pool

A check in LimitOrderManager.sol:232 ensures that the rebate rate set for a particular pool
(rebateRate[pool]) is less than or equal to pool.limitOrderFee(). However, it would be
possible for a call to MasterDeployer.setDynFee() to lower the global limitOrderFee and a
subsequent call to function updateProtocolFee() on the pool to set its limitOrderFee to a
value lower than the corresponding rebateRate[pool] value.

The impact of this issue is that there may be insufficient fees collected to pay for the rebates
when limit orders are claimed. Although this is a significant issue it is unlikely to happen in
practice hence this issue has been classified as minor.



Audit Report for Dfyn - January 26, 2023

Recommendation

There is no simple fix for this since the rebate rate is stored in a mapping in the
LimitOrderManager and not the pool itself. Instead of a mapping from pool to rebate rate being
stored in the LimitOrderManager, consider having the rebateRate stored in the
ConcentratedLiquidityPool contract. Then, when updateProtocolFee is called, ensure that
one sets rebateRate = min(rebateRate, limitOrderFee).

Status
Resolved

Informational Notes

18. Farm.sol: Constructor does not validate _vault /

_poolManager

The Farm contract constructor does not check if the returned _vault has value or if
_poolManager has a valid value.

Recommendation
Consider checking that _vault != address(0) and _poolManager != address(0).

Status
Resolved

19. ConcentratedLiquidityPool.sol: Incorrect documentation

comment for MIN_FEE



Audit Report for Dfyn - January 26, 2023

The documentation comment for MIN_FEE seems to belong to MAX_FEE.

Recommendation
Consider providing the correct documentation for the minimum fee value.

Status
Resolved

20. DfynRouter.sol: Function sweep() is unnecessarily declared

as payable

There is no reason where the caller ever needs to send ETH to the sweep() function.

Recommendation
Consider removing payable from the function’s declaration to avoid any unintended behavior.

Status
Resolved

21. LimitOrderManager.sol: Function setLimitOrderCharge() does

not emit an event

Recommendation
Consider emitting an event in function setLimitOrderCharge().

Status
Resolved



Audit Report for Dfyn - January 26, 2023

22. Farm.sol: Function subscribe() can potentially save on gas by

declaring positionIds as calldata

Declaring the parameter positionIds as calldata instead of memory can potentially save on
gas, since the array values would be directly read from calldata instead of being copied to
memory first.

Recommendation
Declare the positionIds parameter as calldata instead of memory to save on gas fees.

Status
Resolved

23. MixedRoutedQuoterV1.sol: Unnecessary use of require

statement

In the swapCallBack() function on line 112 there is a require() statement that is immediately

followed by a revert statement.

Recommendation

Consider removing the require() statement since the function will revert anyway.

Status
Resolved



Audit Report for Dfyn - January 26, 2023

24. LimitOrderManager.sol: Unnecessary use of return statement

In the claimLimitOrder() function on line 165 it says if (amount == 0) return. However, on the

previous line there is require (amount > 0). This makes line 165 irrelevant.

Recommendation

Consider removing the if statement from line 165.

Status
Resolved

25. LimitOrderManager.sol: Use of confusing function name

The getLimitOrderTokenBalance() function name indicates that a numerical balance will be

returned. Instead, the function actually returns the owner address of a specific token id.

Recommendation

Consider renaming the function to reflect its actual functionality.

Status
Resolved

26. The deadline field of various swap structs is unused

The deadline field of the following structs is unused.
● ExactInputSingleParams



Audit Report for Dfyn - January 26, 2023

● ExactInputParams

● ExactOutputSingleParams

● ExactOutputParams

Recommendation

Consider removing the unused deadline field.

27. ConcentratedLiquidityPool.sol: Unused storage variables

Storage variables rebateRate and limitOrderCharge are currently unused in contract

ConcentratedLiquidityPool. This is confusing (and error prone) since there are two

mappings of exactly the same name in LimitOrderManager.

Status
Resolved



Audit Report for Dfyn - January 26, 2023

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of Dfyn

or its products. This audit does not provide a security or correctness guarantee of the

audited smart contract. Securing smart contracts is a multistep process, therefore

running a bug bounty program as a complement to this audit is strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Oak Security GmbH


